use super::dataset::Dataset;
use crate::{kind, IndexOp, Kind, Tensor};
use std::fs::File;
use std::io::{BufReader, Read, Result};
const W: i64 = 32;
const H: i64 = 32;
const C: i64 = 3;
const BYTES_PER_IMAGE: i64 = W * H * C + 1;
const SAMPLES_PER_FILE: i64 = 10000;
fn read_file_(filename: &std::path::Path) -> Result<(Tensor, Tensor)> {
let mut buf_reader = BufReader::new(File::open(filename)?);
let mut data = vec![0u8; (SAMPLES_PER_FILE * BYTES_PER_IMAGE) as usize];
buf_reader.read_exact(&mut data)?;
let content = Tensor::from_slice(&data);
let images = Tensor::zeros([SAMPLES_PER_FILE, C, H, W], kind::FLOAT_CPU);
let labels = Tensor::zeros([SAMPLES_PER_FILE], kind::INT64_CPU);
for index in 0..SAMPLES_PER_FILE {
let content_offset = BYTES_PER_IMAGE * index;
labels.i(index).copy_(&content.i(content_offset));
images.i(index).copy_(
&content
.narrow(0, 1 + content_offset, BYTES_PER_IMAGE - 1)
.view((C, H, W))
.to_kind(Kind::Float),
);
}
Ok((images.to_kind(Kind::Float) / 255.0, labels))
}
fn read_file(filename: &std::path::Path) -> Result<(Tensor, Tensor)> {
read_file_(filename)
.map_err(|err| std::io::Error::new(err.kind(), format!("{filename:?} {err}")))
}
pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<Dataset> {
let dir = dir.as_ref();
let (test_images, test_labels) = read_file(&dir.join("test_batch.bin"))?;
let train_images_and_labels = [
"data_batch_1.bin",
"data_batch_2.bin",
"data_batch_3.bin",
"data_batch_4.bin",
"data_batch_5.bin",
]
.iter()
.map(|x| read_file(&dir.join(x)))
.collect::<Result<Vec<_>>>()?;
let (train_images, train_labels): (Vec<_>, Vec<_>) =
train_images_and_labels.into_iter().unzip();
Ok(Dataset {
train_images: Tensor::cat(&train_images, 0),
train_labels: Tensor::cat(&train_labels, 0),
test_images,
test_labels,
labels: 10,
})
}