use crate::{nn, nn::Conv2D, nn::ModuleT, Tensor};
fn conv2d(p: nn::Path, c_in: i64, c_out: i64, ksize: i64, padding: i64, stride: i64) -> Conv2D {
let conv2d_cfg = nn::ConvConfig { stride, padding, ..Default::default() };
nn::conv2d(p, c_in, c_out, ksize, conv2d_cfg)
}
fn max_pool2d(xs: Tensor, ksize: i64, stride: i64) -> Tensor {
xs.max_pool2d([ksize, ksize], [stride, stride], [0, 0], [1, 1], false)
}
fn features(p: nn::Path) -> impl ModuleT {
nn::seq_t()
.add(conv2d(&p / "0", 3, 64, 11, 2, 4))
.add_fn(|xs| max_pool2d(xs.relu(), 3, 2))
.add(conv2d(&p / "3", 64, 192, 5, 1, 2))
.add_fn(|xs| max_pool2d(xs.relu(), 3, 2))
.add(conv2d(&p / "6", 192, 384, 3, 1, 1))
.add_fn(|xs| xs.relu())
.add(conv2d(&p / "8", 384, 256, 3, 1, 1))
.add_fn(|xs| xs.relu())
.add(conv2d(&p / "10", 256, 256, 3, 1, 1))
.add_fn(|xs| max_pool2d(xs.relu(), 3, 2))
}
fn classifier(p: nn::Path, nclasses: i64) -> impl ModuleT {
nn::seq_t()
.add_fn_t(|xs, train| xs.dropout(0.5, train))
.add(nn::linear(&p / "1", 256 * 6 * 6, 4096, Default::default()))
.add_fn(|xs| xs.relu())
.add_fn_t(|xs, train| xs.dropout(0.5, train))
.add(nn::linear(&p / "4", 4096, 4096, Default::default()))
.add_fn(|xs| xs.relu())
.add(nn::linear(&p / "6", 4096, nclasses, Default::default()))
}
pub fn alexnet(p: &nn::Path, nclasses: i64) -> impl ModuleT {
nn::seq_t()
.add(features(p / "features"))
.add_fn(|xs| xs.adaptive_avg_pool2d([6, 6]).flat_view())
.add(classifier(p / "classifier", nclasses))
}