1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
//! Variable stores.
use super::Init;
use crate::tensor::Tensor;
use crate::wrappers::stream::ReadSeekAdapter;
use crate::{Device, Kind, TchError};
use std::collections::hash_map::Entry::{Occupied, Vacant};
use std::collections::HashMap;
use std::io::{Read, Seek};
use std::ops::Div;
use std::sync::{Arc, Mutex, MutexGuard};
/// The separator is used to separate path elements in the tensor names.
const SEP: char = '.';
#[derive(Debug)]
pub struct Var {
pub tensor: Tensor,
pub group: usize,
}
// When the variable store is frozen, the trainable_variables vector
// still contains the same tensors however these tensors are set not
// to require gradients.
#[derive(Debug)]
pub struct Variables {
pub named_variables: HashMap<String, Tensor>,
pub trainable_variables: Vec<Var>,
}
/// A VarStore is used to store variables used by one or multiple layers.
/// It specifies a single device where all variables are stored.
#[derive(Debug)]
pub struct VarStore {
pub variables_: Arc<Mutex<Variables>>,
device: Device,
}
/// A variable store with an associated path for variables naming.
#[derive(Debug, Clone)]
pub struct Path<'a> {
path: Vec<String>,
group: usize,
var_store: &'a VarStore,
}
/// An Entry holds an entry corresponding to a given name in Path.
#[derive(Debug)]
pub struct Entry<'a> {
name: &'a str,
variables: MutexGuard<'a, Variables>,
// This field holds the mutex lock
path: &'a Path<'a>,
}
impl VarStore {
/// Creates a new var-store located on the specified device.
pub fn new(device: Device) -> VarStore {
let variables =
Variables { named_variables: HashMap::new(), trainable_variables: Vec::new() };
VarStore { variables_: Arc::new(Mutex::new(variables)), device }
}
pub fn merge(var_stores: Vec<(VarStore, Option<&str>)>) -> Result<VarStore, TchError> {
let mut new_var_store = VarStore::new(Device::Cpu);
if var_stores.is_empty() {
Ok(new_var_store)
} else {
let mut new_variables =
Variables { named_variables: HashMap::new(), trainable_variables: Vec::new() };
let device = var_stores[0].0.device();
for (var_store, prefix) in var_stores {
if var_store.device() != device {
return Err(TchError::Torch(format!(
"All VarStores must be on the same device, got {:?} and {:?}",
device,
var_store.device()
)));
}
for (var_name, var) in var_store.variables() {
let new_var_name = format!("{}{}", prefix.unwrap_or(""), var_name);
match new_variables.named_variables.entry(new_var_name) {
Occupied(v) => {
return Err(TchError::Torch(format!(
"Duplicate variable name found: {}. Provide a unique prefix to allow merge operation",
v.key(),
)));
}
Vacant(v) => {
v.insert(var);
}
}
}
for trainable_var in
var_store.variables_.lock().unwrap().trainable_variables.drain(..)
{
new_variables.trainable_variables.push(trainable_var);
}
}
new_var_store.variables_ = Arc::new(Mutex::new(new_variables));
new_var_store.device = device;
Ok(new_var_store)
}
}
/// Gets the device for this var-store.
pub fn device(&self) -> Device {
self.device
}
/// Returns the number of tensors currently stored on this var-store.
pub fn len(&self) -> usize {
let variables = self.variables_.lock().unwrap();
variables.named_variables.len()
}
/// Returns true if no tensors are currently stored on this var-store.
pub fn is_empty(&self) -> bool {
let variables = self.variables_.lock().unwrap();
variables.named_variables.is_empty()
}
/// Returns all the trainable variables for this var-store.
pub fn trainable_variables(&self) -> Vec<Tensor> {
let variables = self.variables_.lock().unwrap();
variables.trainable_variables.iter().map(|v| v.tensor.shallow_clone()).collect()
}
/// Returns all variables along with their names.
pub fn variables(&self) -> HashMap<String, Tensor> {
let variables = self.variables_.lock().unwrap();
variables
.named_variables
.iter()
.map(|(name, v)| (name.clone(), v.shallow_clone()))
.collect()
}
/// Gets the root path for this variable store.
///
/// Variables are named and organized using paths. This function returns
/// the top level path for the var store and can be combined with '/'
/// to create sub-paths.
pub fn root(&self) -> Path {
Path { path: vec![], group: 0, var_store: self }
}
/// Saves the var-store variable values to a file.
///
/// Weight values for all the tensors currently stored in the
/// var-store are saved in the given file.
pub fn save<T: AsRef<std::path::Path>>(&self, path: T) -> Result<(), TchError> {
let variables = self.variables_.lock().unwrap();
let named_tensors = variables.named_variables.iter().collect::<Vec<_>>();
match path.as_ref().extension().and_then(|x| x.to_str()) {
Some("safetensors") => Tensor::write_safetensors(named_tensors.as_slice(), path),
Some(_) | None => Tensor::save_multi(named_tensors.as_slice(), path),
}
}
/// Saves the var-store variable values to a stream.
///
/// Weight values for all the tensors currently stored in the
/// var-store gets saved in the given stream.
pub fn save_to_stream<W: std::io::Write>(&self, stream: W) -> Result<(), TchError> {
let variables = self.variables_.lock().unwrap();
let named_tensors = variables.named_variables.iter().collect::<Vec<_>>();
Tensor::save_multi_to_stream(named_tensors.as_slice(), stream)
}
fn named_tensors<T: AsRef<std::path::Path>>(
&self,
path: T,
) -> Result<HashMap<String, Tensor>, TchError> {
let named_tensors = match path.as_ref().extension().and_then(|x| x.to_str()) {
Some("bin") | Some("pt") => Tensor::loadz_multi_with_device(&path, self.device),
Some("safetensors") => Tensor::read_safetensors(path),
Some(_) | None => Tensor::load_multi_with_device(&path, self.device),
};
Ok(named_tensors?.into_iter().collect())
}
/// Copies the data from source tensor to destination
///
/// Updates the precision of the destination to match the source
fn copy_data_with_precision_update(src: &Tensor, dst: &mut Tensor) -> Result<(), TchError> {
dst.set_data(&dst.to_kind(src.kind()));
dst.f_copy_(src)
}
fn load_internal<T: AsRef<std::path::Path>>(&mut self, path: T) -> Result<(), TchError> {
let named_tensors = self.named_tensors(&path)?;
let mut variables = self.variables_.lock().unwrap();
for (name, var) in variables.named_variables.iter_mut() {
match named_tensors.get(name) {
Some(src) => crate::no_grad(|| {
Self::copy_data_with_precision_update(src, var)
.map_err(|e| e.path_context(name))
})?,
None => {
return Err(TchError::TensorNameNotFound(
name.to_string(),
path.as_ref().to_string_lossy().into_owned(),
));
}
}
}
Ok(())
}
/// Loads the var-store variable values from a file.
///
/// Weight values for all the tensors currently stored in the
/// var-store are loaded from the given file. Note that the set of
/// variables stored in the var-store is not changed, only the values
/// for these tensors are modified.
pub fn load<T: AsRef<std::path::Path>>(&mut self, path: T) -> Result<(), TchError> {
if self.device != Device::Mps {
self.load_internal(path)
} else {
// Current workaround to allow loading in MPS device.
// On new libtorch releases check if direct loading becomes possible and revert
// See (https://github.com/LaurentMazare/tch-rs/issues/609#issuecomment-1427071598).
self.set_device(Device::Cpu);
let or_error = self.load_internal(path);
// Be cautious not to early exit so as to ensure that the device is set back to Mps
// even on errors.
self.set_device(Device::Mps);
or_error
}
}
/// Loads the var-store variable values from a stream.
///
/// Weight values for all the tensors currently stored in the
/// var-store gets loaded from the given stream. Note that the set of
/// variables stored in the var-store is not changed, only the values
/// for these tensors are modified.
pub fn load_from_stream<S: Read + Seek>(&mut self, stream: S) -> Result<(), TchError> {
let adapter = ReadSeekAdapter::new(stream);
let named_tensors = Tensor::load_multi_from_stream_with_device(adapter, self.device)?;
let named_tensors: HashMap<_, _> = named_tensors.into_iter().collect();
let mut variables = self.variables_.lock().unwrap();
for (name, var) in variables.named_variables.iter_mut() {
match named_tensors.get(name) {
Some(src) => crate::no_grad(|| {
Self::copy_data_with_precision_update(src, var)
.map_err(|e| e.path_context(name))
})?,
None => {
return Err(TchError::TensorNameNotFound(
name.to_string(),
"source stream".to_string(),
));
}
}
}
Ok(())
}
/// Loads the var-store variable values from a file if it exists.
///
/// Weight values for the tensors currently stored in the var-store and the given file get
/// loaded from the given file. If a variable in the var store is not present in the given file,
/// it is skipped and its values are not updated. This method should be used if pre-trained
/// weight for only parts of the model are available.
/// Note that the set of variables stored in the var-store is not changed, only the values
/// for these tensors are modified.
///
/// Returns a String Vector containing the names of missing variables.
pub fn load_partial<T: AsRef<std::path::Path>>(
&mut self,
path: T,
) -> Result<Vec<String>, TchError> {
let named_tensors = self.named_tensors(&path)?;
let mut variables = self.variables_.lock().unwrap();
let mut missing_variables = Vec::new();
for (name, var) in variables.named_variables.iter_mut() {
match named_tensors.get(name) {
Some(src) => crate::no_grad(|| {
Self::copy_data_with_precision_update(src, var)
.map_err(|e| e.path_context(name))
})?,
None => {
missing_variables.push(name.to_owned());
}
}
}
Ok(missing_variables)
}
/// Freezes a var store.
///
/// Gradients for the variables in this store are not tracked
/// anymore.
pub fn freeze(&mut self) {
let variables = self.variables_.lock().unwrap();
for variable in variables.trainable_variables.iter() {
let _v = variable.tensor.set_requires_grad(false);
}
}
/// Unfreezes a var store.
///
/// Gradients for the variables in this store are tracked again.
pub fn unfreeze(&mut self) {
let variables = self.variables_.lock().unwrap();
for variable in variables.trainable_variables.iter() {
let _v = variable.tensor.set_requires_grad(true);
}
}
/// Casts all variables in a var store to the target kind .
///
/// For floating-point conversion, methods `half`, `bfloat16`, `float` and `double`
/// should be preferred as they ensure only float-like variables will be converted
/// to the target type.
pub fn set_kind(&mut self, kind: Kind) {
self.root().set_kind(kind);
}
/// Casts all float-like variable of a var store to half-precision (Half kind).
pub fn half(&mut self) {
self.root().half();
}
/// Casts all float-like variable of a var store to bfloat16-precision (BFloat16 kind).
pub fn bfloat16(&mut self) {
self.root().bfloat16();
}
/// Casts all float-like variable of a var store to single-precision (Float kind).
pub fn float(&mut self) {
self.root().float();
}
/// Casts all float-like variable of a var store to single-precision (Double kind).
pub fn double(&mut self) {
self.root().double();
}
/// Migrates a var store and all its tensor to a target device.
pub fn set_device(&mut self, device: Device) {
let mut variables = self.variables_.lock().unwrap();
for (_, variable) in variables.named_variables.iter_mut() {
variable.set_data(&variable.to_device(device));
}
self.device = device
}
/// Copies variable values from a source var store to this var store.
///
/// All the variables in this var store have to exist with the same
/// name in the source var store, otherwise an error is returned.
pub fn copy(&mut self, src: &VarStore) -> Result<(), TchError> {
let mut variables = self.variables_.lock().unwrap();
let src_variables = src.variables_.lock().unwrap();
let device = self.device;
for name in variables.named_variables.keys() {
if !src_variables.named_variables.contains_key(name) {
return Err(TchError::TensorNameNotFound(
name.to_string(),
"src var-store".to_string(),
));
}
}
for (name, var) in variables.named_variables.iter_mut() {
let src_var = src_variables.named_variables.get(name).unwrap();
crate::no_grad(|| var.f_copy_(&src_var.to_device(device)))?;
}
Ok(())
}
}
impl<'a> Path<'a> {
/// Get the components of the path.
pub fn components(&self) -> impl Iterator<Item = &str> {
self.path.iter().map(String::as_str)
}
/// Gets a sub-path of the given path.
pub fn sub<T: std::string::ToString>(&self, s: T) -> Path<'a> {
let s = s.to_string();
if s.chars().any(|x| x == SEP) {
panic!("sub name cannot contain {SEP} {s}");
}
let mut path = self.path.clone();
path.push(s);
Path { path, group: self.group, var_store: self.var_store }
}
pub fn set_group(&self, group: usize) -> Path<'a> {
Path { path: self.path.clone(), group, var_store: self.var_store }
}
/// Gets the device where the var-store variables are stored.
pub fn device(&self) -> Device {
self.var_store.device
}
pub fn path(&self, name: &str) -> String {
if name.chars().any(|x| x == SEP) {
panic!("variable name cannot contain {SEP} {name}");
}
if self.path.is_empty() {
name.to_string()
} else {
format!("{}{}{}", self.path.join(&SEP.to_string()), SEP, name)
}
}
/// Casts all variables in a var store sub-path to the target kind .
///
/// Only the variable in the path sub-tree are cast to the target kind:
/// other var store variables are unaffected. For floating-point conversion, methods
/// `half`, `bfloat16`, `float` and `double` should be preferred as they ensure only
/// float-like variables will be converted to the target type.
pub fn set_kind(&mut self, kind: Kind) {
let path_root = self.path.join(SEP.to_string().as_str());
let mut variables = self.var_store.variables_.lock().unwrap();
for (variable_name, variable) in variables.named_variables.iter_mut() {
if variable_name.starts_with(&path_root) {
variable.set_data(&variable.to_kind(kind));
}
}
}
/// Casts all float-like variables in a var store sub-path to the target kind .
///
/// Only the float-like variable in the path sub-tree are cast to the target kind:
/// other var store variables are unaffected
fn set_float_kind(&mut self, kind: Kind) {
let path_root = self.path.join(SEP.to_string().as_str());
let mut variables = self.var_store.variables_.lock().unwrap();
for (variable_name, variable) in variables.named_variables.iter_mut() {
if variable_name.starts_with(&path_root) & variable.is_floating_point() {
variable.set_data(&variable.to_kind(kind));
}
}
}
/// Casts all float-like variables in a var store sub-path to half-precision (Half kind).
///
/// Only the variable in the path sub-tree are cast to half-precision:
/// other var store variables are unaffected
pub fn half(&mut self) {
self.set_float_kind(Kind::Half);
}
/// Casts all float-like variables in a var store sub-path to bfloat16-precision (BFloat16 kind).
///
/// Only the variable in the path sub-tree are cast to bfloat16-precision:
/// other var store variables are unaffected
pub fn bfloat16(&mut self) {
self.set_float_kind(Kind::BFloat16);
}
/// Casts all float-like variables in a var store sub-path to single-precision (Float kind).
///
/// Only the variable in the path sub-tree are cast to single-precision:
/// other var store variables are unaffected
pub fn float(&mut self) {
self.set_float_kind(Kind::Float);
}
/// Casts all float-like variables in a var store sub-path to double-precision (Double kind).
///
/// Only the variable in the path sub-tree are cast to double-precision:
/// other var store variables are unaffected
pub fn double(&mut self) {
self.set_float_kind(Kind::Double);
}
pub(crate) fn add(&self, name: &str, tensor: Tensor, trainable: bool) -> Tensor {
let path = self.path(name);
let mut variables = self.var_store.variables_.lock().unwrap();
let path = if variables.named_variables.contains_key(&path) {
format!("{}__{}", path, variables.named_variables.len())
} else {
path
};
let tensor = if trainable { tensor.set_requires_grad(true) } else { tensor };
if trainable {
let var = Var { tensor: tensor.shallow_clone(), group: self.group };
variables.trainable_variables.push(var);
};
variables.named_variables.insert(path, tensor.shallow_clone());
tensor
}
fn get_or_add_with_lock(
&self,
name: &str,
tensor: Tensor,
trainable: bool,
mut variables: MutexGuard<Variables>,
) -> Tensor {
let path = self.path(name);
if let Some(var) = variables.named_variables.get(&path) {
return var.shallow_clone();
}
let tensor = if trainable { tensor.set_requires_grad(true) } else { tensor };
if trainable {
let var = Var { tensor: tensor.shallow_clone(), group: self.group };
variables.trainable_variables.push(var);
}
variables.named_variables.insert(path, tensor.shallow_clone());
tensor
}
/// Creates a new variable initialized with zeros.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable will not be trainable so
/// gradients will not be tracked.
/// The variable uses a float tensor initialized with zeros.
pub fn f_zeros_no_train(&self, name: &str, dims: &[i64]) -> Result<Tensor, TchError> {
let z = Tensor::f_zeros(dims, (Kind::Float, self.device()))?;
Ok(self.add(name, z, false))
}
/// Creates a new variable initialized with ones.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable will not be trainable so
/// gradients will not be tracked.
/// The variable uses a float tensor initialized with ones.
pub fn f_ones_no_train(&self, name: &str, dims: &[i64]) -> Result<Tensor, TchError> {
let o = Tensor::f_ones(dims, (Kind::Float, self.device()))?;
Ok(self.add(name, o, false))
}
/// Creates a new variable.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized as per the
/// related argument.
pub fn f_var(&self, name: &str, dims: &[i64], init: Init) -> Result<Tensor, TchError> {
let v = super::f_init(init, dims, self.device())?;
Ok(self.add(name, v, true))
}
/// Creates a new variable initialized with zeros.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized with zeros.
pub fn f_zeros(&self, name: &str, dims: &[i64]) -> Result<Tensor, TchError> {
self.f_var(name, dims, Init::Const(0.))
}
/// Creates a new variable initialized with ones.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized with ones.
pub fn f_ones(&self, name: &str, dims: &[i64]) -> Result<Tensor, TchError> {
self.f_var(name, dims, Init::Const(1.))
}
/// Creates a new variable initialized randomly with normal distribution.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// standard normal distribution.
pub fn f_randn_standard(&self, name: &str, dims: &[i64]) -> Result<Tensor, TchError> {
let init = Init::Randn { mean: 0., stdev: 1. };
self.f_var(name, dims, init)
}
/// Creates a new variable initialized randomly with normal distribution.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// normal distribution with the specified mean and standard deviation.
pub fn f_randn(
&self,
name: &str,
dims: &[i64],
mean: f64,
stdev: f64,
) -> Result<Tensor, TchError> {
self.f_var(name, dims, Init::Randn { mean, stdev })
}
/// Creates a new variable initialized randomly with uniform distribution.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// uniform distribution between the specified bounds.
pub fn f_uniform(
&self,
name: &str,
dims: &[i64],
lo: f64,
up: f64,
) -> Result<Tensor, TchError> {
self.f_var(name, dims, Init::Uniform { lo, up })
}
/// Creates a new variable initialized randomly with kaiming uniform.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// uniform distribution which bounds follow Kaiming initialization.
pub fn f_kaiming_uniform(&self, name: &str, dims: &[i64]) -> Result<Tensor, TchError> {
self.f_var(name, dims, super::init::DEFAULT_KAIMING_UNIFORM)
}
/// Creates a new variable initialized randomly with kaiming normal.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// normal distribution which stdev follow Kaiming initialization.
pub fn f_kaiming_normal(&self, name: &str, dims: &[i64]) -> Result<Tensor, TchError> {
self.f_var(name, dims, super::init::DEFAULT_KAIMING_NORMAL)
}
/// Creates a new variable initialized randomly with an orthogonal matrix
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly with an orthogonal
/// matrix as described in *Exact solutions to the nonlinear dynamics
/// of learning in deep linear neural networks* - Saxe, A. et. al. (2013).
/// The input tensor must have at least 2 dimensions, and for tensors
/// with more than 2 dimensions the trailing dimensions are flattened.
pub fn f_orthogonal(&self, name: &str, dims: &[i64], gain: f64) -> Result<Tensor, TchError> {
self.f_var(name, dims, Init::Orthogonal { gain })
}
/// Creates a new variable initialized by copying an existing tensor.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized by copying some
/// given tensor.
pub fn f_var_copy(&self, name: &str, t: &Tensor) -> Result<Tensor, TchError> {
let mut v = self.f_zeros(name, &t.size())?;
crate::no_grad(|| v.f_copy_(t))?;
Ok(v)
}
/// Creates a new variable initialized with zeros.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable will not be trainable so
/// gradients will not be tracked.
/// The variable uses a float tensor initialized with zeros.
pub fn zeros_no_train(&self, name: &str, dims: &[i64]) -> Tensor {
self.f_zeros_no_train(name, dims).unwrap()
}
/// Creates a new variable initialized with ones.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable will not be trainable so
/// gradients will not be tracked.
/// The variable uses a float tensor initialized with ones.
pub fn ones_no_train(&self, name: &str, dims: &[i64]) -> Tensor {
self.f_ones_no_train(name, dims).unwrap()
}
/// Creates a new variable.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized as per the
/// related argument.
pub fn var(&self, name: &str, dims: &[i64], init: Init) -> Tensor {
self.f_var(name, dims, init).unwrap()
}
/// Creates a new variable initialized with zeros.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized with zeros.
pub fn zeros(&self, name: &str, dims: &[i64]) -> Tensor {
self.f_zeros(name, dims).unwrap()
}
/// Creates a new variable initialized with ones.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized with ones.
pub fn ones(&self, name: &str, dims: &[i64]) -> Tensor {
self.f_ones(name, dims).unwrap()
}
/// Creates a new variable initialized randomly with normal distribution.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// standard normal distribution.
pub fn randn_standard(&self, name: &str, dims: &[i64]) -> Tensor {
self.f_randn_standard(name, dims).unwrap()
}
/// Creates a new variable initialized randomly with normal distribution.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// normal distribution with the specified mean and standard deviation.
pub fn randn(&self, name: &str, dims: &[i64], mean: f64, stdev: f64) -> Tensor {
self.f_randn(name, dims, mean, stdev).unwrap()
}
/// Creates a new variable initialized randomly with uniform distribution.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// uniform distribution between the specified bounds.
pub fn uniform(&self, name: &str, dims: &[i64], lo: f64, up: f64) -> Tensor {
self.f_uniform(name, dims, lo, up).unwrap()
}
/// Creates a new variable initialized randomly with kaiming uniform.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// uniform distribution which bounds follow Kaiming initialization.
pub fn kaiming_uniform(&self, name: &str, dims: &[i64]) -> Tensor {
self.f_kaiming_uniform(name, dims).unwrap()
}
/// Creates a new variable initialized randomly with kaiming normal.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly using a
/// normal distribution which stdev follow Kaiming initialization.
pub fn kaiming_normal(&self, name: &str, dims: &[i64]) -> Tensor {
self.f_kaiming_normal(name, dims).unwrap()
}
/// Creates a new variable initialized randomly with an orthogonal matrix
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized randomly with an orthogonal
/// matrix as described in *Exact solutions to the nonlinear dynamics
/// of learning in deep linear neural networks* - Saxe, A. et. al. (2013).
/// The input tensor must have at least 2 dimensions, and for tensors
/// with more than 2 dimensions the trailing dimensions are flattened.
pub fn orthogonal(&self, name: &str, dims: &[i64], gain: f64) -> Tensor {
self.f_orthogonal(name, dims, gain).unwrap()
}
/// Creates a new variable initialized by copying an existing tensor.
///
/// The new variable is named according to the name parameter and
/// has the specified shape. The variable is trainable, its gradient
/// will be tracked.
/// The variable uses a float tensor initialized by copying some
/// given tensor.
pub fn var_copy(&self, name: &str, t: &Tensor) -> Tensor {
self.f_var_copy(name, t).unwrap()
}
/// Gets the tensor corresponding to a given name if present.
pub fn get(&self, name: &str) -> Option<Tensor> {
let path = self.path(name);
let variables = self.var_store.variables_.lock().unwrap();
variables.named_variables.get(&path).map(|v| v.shallow_clone())
}
/// Gets the entry corresponding to a given name for in-place manipulation.
pub fn entry<'b>(&'b self, name: &'b str) -> Entry<'b> {
let variables = self.var_store.variables_.lock().unwrap();
Entry { name, variables, path: self }
}
}
impl<'a> Entry<'a> {
/// Returns the existing entry if, otherwise create a new variable.
///
/// If this entry name matches the name of a variables stored in the
/// var store, the corresponding tensor is returned. Otherwise a new
/// variable is added to the var-store with the entry name and is
/// initialized according to the init parameter.
pub fn or_var(self, dims: &[i64], init: Init) -> Tensor {
let v = super::init(init, dims, self.path.device());
self.path.get_or_add_with_lock(self.name, v, true, self.variables)
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_var_copy(self, tensor: &Tensor) -> Tensor {
let mut v = self.or_zeros(&tensor.size());
crate::no_grad(|| v.copy_(tensor));
v
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_kaiming_uniform(self, dims: &[i64]) -> Tensor {
self.or_var(dims, super::init::DEFAULT_KAIMING_NORMAL)
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_kaiming_normal(self, dims: &[i64]) -> Tensor {
self.or_var(dims, super::init::DEFAULT_KAIMING_NORMAL)
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_orthogonal(self, dims: &[i64], gain: f64) -> Tensor {
self.or_var(dims, Init::Orthogonal { gain })
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_ones(self, dims: &[i64]) -> Tensor {
self.or_var(dims, Init::Const(1.))
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_ones_no_train(self, dims: &[i64]) -> Tensor {
let o = Tensor::ones(dims, (Kind::Float, self.path.device()));
self.path.get_or_add_with_lock(self.name, o, true, self.variables)
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_randn(self, dims: &[i64], mean: f64, stdev: f64) -> Tensor {
self.or_var(dims, Init::Randn { mean, stdev })
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_randn_standard(self, dims: &[i64]) -> Tensor {
let init = Init::Randn { mean: 0., stdev: 1. };
self.or_var(dims, init)
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_uniform(self, dims: &[i64], lo: f64, up: f64) -> Tensor {
self.or_var(dims, Init::Uniform { lo, up })
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_zeros(self, dims: &[i64]) -> Tensor {
self.or_var(dims, Init::Const(0.))
}
/// Returns the existing entry if, otherwise create a new variable.
pub fn or_zeros_no_train(self, dims: &[i64]) -> Tensor {
let z = Tensor::zeros(dims, (Kind::Float, self.path.device()));
self.path.get_or_add_with_lock(self.name, z, true, self.variables)
}
}
impl<'a, T> Div<T> for &mut Path<'a>
where
T: std::string::ToString,
{
type Output = Path<'a>;
fn div(self, rhs: T) -> Self::Output {
self.sub(rhs.to_string())
}
}
impl<'a, T> Div<T> for &Path<'a>
where
T: std::string::ToString,
{
type Output = Path<'a>;
fn div(self, rhs: T) -> Self::Output {
self.sub(rhs.to_string())
}
}
impl<'a, T> Div<T> for Path<'a>
where
T: std::string::ToString,
{
type Output = Path<'a>;
fn div(self, rhs: T) -> Self::Output {
self.sub(rhs.to_string())
}
}