1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
//! A sequential layer used to chain multiple layers and closures.
use super::{Module, ModuleT};
use crate::Tensor;

/// A sequential layer combining multiple other layers.
#[derive(Debug)]
pub struct Sequential {
    layers: Vec<Box<dyn Module>>,
}

/// Creates a new empty sequential layer.
pub fn seq() -> Sequential {
    Sequential { layers: vec![] }
}

impl Sequential {
    /// The number of sub-layers embedded in this layer.
    pub fn len(&self) -> i64 {
        self.layers.len() as i64
    }

    /// Returns true if this layer does not have any sub-layer.
    pub fn is_empty(&self) -> bool {
        self.layers.is_empty()
    }
}

impl Module for Sequential {
    fn forward(&self, xs: &Tensor) -> Tensor {
        if self.layers.is_empty() {
            xs.shallow_clone()
        } else {
            let xs = self.layers[0].forward(xs);
            self.layers.iter().skip(1).fold(xs, |xs, layer| layer.forward(&xs))
        }
    }
}

impl Sequential {
    /// Appends a layer after all the current layers.
    #[allow(clippy::should_implement_trait)]
    pub fn add<M: Module + 'static>(mut self, layer: M) -> Self {
        self.layers.push(Box::new(layer));
        self
    }

    /// Appends a closure after all the current layers.
    pub fn add_fn<F>(self, f: F) -> Self
    where
        F: 'static + Fn(&Tensor) -> Tensor + Send,
    {
        self.add(super::func(f))
    }

    /// Applies the forward pass and returns the output for each layer.
    pub fn forward_all(&self, xs: &Tensor, n: Option<usize>) -> Vec<Tensor> {
        if self.layers.is_empty() {
            vec![xs.shallow_clone()]
        } else {
            let n = n.unwrap_or(self.layers.len());
            let xs = self.layers[0].forward(xs);
            let mut vec = vec![];
            let out = self.layers.iter().take(n).skip(1).fold(xs, |xs, layer| {
                let out = layer.forward(&xs);
                vec.push(xs);
                out
            });
            vec.push(out);
            vec
        }
    }
}

/// A sequential layer combining new layers with support for a training mode.
#[derive(Debug)]
pub struct SequentialT {
    layers: Vec<Box<dyn ModuleT>>,
}

/// Creates a new empty sequential layer.
pub fn seq_t() -> SequentialT {
    SequentialT { layers: vec![] }
}

impl SequentialT {
    /// The number of sub-layers embedded in this layer.
    pub fn len(&self) -> i64 {
        self.layers.len() as i64
    }

    /// Returns true if this layer does not have any sub-layer.
    pub fn is_empty(&self) -> bool {
        self.layers.is_empty()
    }
}

impl ModuleT for SequentialT {
    fn forward_t(&self, xs: &Tensor, train: bool) -> Tensor {
        if self.layers.is_empty() {
            xs.shallow_clone()
        } else {
            let xs = self.layers[0].forward_t(xs, train);
            self.layers.iter().skip(1).fold(xs, |xs, layer| layer.forward_t(&xs, train))
        }
    }
}

impl SequentialT {
    /// Appends a layer after all the current layers.
    #[allow(clippy::should_implement_trait)]
    pub fn add<M: ModuleT + 'static>(mut self, layer: M) -> Self {
        self.layers.push(Box::new(layer));
        self
    }

    /// Appends a closure after all the current layers.
    pub fn add_fn<F>(self, f: F) -> Self
    where
        F: 'static + Fn(&Tensor) -> Tensor + Send,
    {
        self.add(super::func(f))
    }

    /// Appends a closure after all the current layers.
    pub fn add_fn_t<F>(self, f: F) -> Self
    where
        F: 'static + Fn(&Tensor, bool) -> Tensor + Send,
    {
        self.add(super::func_t(f))
    }

    /// Applies the forward pass and returns the output for each layer.
    pub fn forward_all_t(&self, xs: &Tensor, train: bool, n: Option<usize>) -> Vec<Tensor> {
        if self.layers.is_empty() {
            vec![xs.shallow_clone()]
        } else {
            let n = n.unwrap_or(self.layers.len());
            let xs = self.layers[0].forward_t(xs, train);
            let mut vec = vec![];
            let out = self.layers.iter().take(n).skip(1).fold(xs, |xs, layer| {
                let out = layer.forward_t(&xs, train);
                vec.push(xs);
                out
            });
            vec.push(out);
            vec
        }
    }
}