1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! Variable initialization.
use crate::{Device, Kind, TchError, Tensor};

/// Number of features as input or output of a layer.
/// In Kaiming initialization, choosing `FanIn` preserves
/// the magnitude of the variance of the weights in the
/// forward pass, choosing `FanOut` preserves this
/// magnitude in the backward pass.
#[derive(Debug, Copy, Clone)]
pub enum FanInOut {
    FanIn,
    FanOut,
}

impl FanInOut {
    /// Compute the fan-in or fan-out value for a weight tensor of
    /// the specified dimensions.
    /// <https://github.com/pytorch/pytorch/blob/dbeacf11820e336e803bb719b7aaaf2125ae4d9c/torch/nn/init.py#L284>
    pub fn for_weight_dims(&self, dims: &[i64]) -> i64 {
        let receptive_field_size: i64 = dims.iter().skip(2).product();
        match &self {
            FanInOut::FanIn => {
                if dims.len() < 2 {
                    1
                } else {
                    dims[1] * receptive_field_size
                }
            }
            FanInOut::FanOut => {
                if dims.is_empty() {
                    1
                } else {
                    dims[0] * receptive_field_size
                }
            }
        }
    }
}

#[derive(Debug, Copy, Clone)]
pub enum NormalOrUniform {
    Normal,
    Uniform,
}

/// The non-linear function that follows this layer. ReLU is the
/// recommended value.
#[derive(Debug, Copy, Clone)]
pub enum NonLinearity {
    ReLU,
    Linear,
    Sigmoid,
    Tanh,
    SELU,
    ExplicitGain(f64),
}

impl NonLinearity {
    pub fn gain(&self) -> f64 {
        match *self {
            NonLinearity::ReLU => 2f64.sqrt(),
            NonLinearity::Tanh => 5. / 3.,
            NonLinearity::Linear | NonLinearity::Sigmoid => 1.,
            NonLinearity::SELU => 0.75,
            NonLinearity::ExplicitGain(g) => g,
        }
    }
}

/// Variable initializations.
#[derive(Debug, Copy, Clone)]
pub enum Init {
    /// Constant value.
    Const(f64),

    /// Random normal with some mean and standard deviation.
    Randn { mean: f64, stdev: f64 },

    /// Uniform initialization between some lower and upper bounds.
    Uniform { lo: f64, up: f64 },

    /// Kaiming uniform initialization.
    /// See "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification"
    /// He, K. et al. (2015). This uses a uniform distribution.
    Kaiming { dist: NormalOrUniform, fan: FanInOut, non_linearity: NonLinearity },

    /// Orthogonal initialization
    Orthogonal { gain: f64 },
}

pub const DEFAULT_KAIMING_UNIFORM: Init = Init::Kaiming {
    dist: NormalOrUniform::Uniform,
    fan: FanInOut::FanIn,
    non_linearity: NonLinearity::ReLU,
};

pub const DEFAULT_KAIMING_NORMAL: Init = Init::Kaiming {
    dist: NormalOrUniform::Normal,
    fan: FanInOut::FanIn,
    non_linearity: NonLinearity::ReLU,
};

/// Creates a new float tensor with the specified shape, device, and initialization.
pub fn f_init(i: Init, dims: &[i64], device: Device) -> Result<Tensor, TchError> {
    match i {
        Init::Const(cst) => {
            // Optimize the case for which a single C++ code can be done.
            if cst == 0. {
                Tensor::f_zeros(dims, (Kind::Float, device))
            } else if (cst - 1.).abs() <= std::f64::EPSILON {
                Tensor::f_ones(dims, (Kind::Float, device))
            } else {
                Tensor::f_ones(dims, (Kind::Float, device)).map(|t| t * cst)
            }
        }
        Init::Uniform { lo, up } => {
            Tensor::f_zeros(dims, (Kind::Float, device))?.f_uniform_(lo, up)
        }
        Init::Randn { mean, stdev } => {
            if mean == 0. && (stdev - 1.).abs() <= std::f64::EPSILON {
                Tensor::f_randn(dims, (Kind::Float, device))
            } else {
                Tensor::f_randn(dims, (Kind::Float, device)).map(|t| t * stdev + mean)
            }
        }
        Init::Kaiming { dist, fan, non_linearity } => {
            let fan = fan.for_weight_dims(dims);
            let gain = non_linearity.gain();
            let std = gain / (fan as f64).sqrt();
            match dist {
                NormalOrUniform::Uniform => {
                    let bound = 3f64.sqrt() * std;
                    Tensor::f_zeros(dims, (Kind::Float, device))?.f_uniform_(-bound, bound)
                }
                NormalOrUniform::Normal => {
                    let randn = Tensor::f_randn(dims, (Kind::Float, device))?;
                    Ok(randn * std)
                }
            }
        }
        Init::Orthogonal { gain } => {
            if dims.len() < 2 {
                return Err(TchError::Shape(
                    "Only tensors with 2 or more dimensions are supported".to_string(),
                ));
            }
            let rows = dims[0];
            let cols: i64 = dims.iter().skip(1).product();

            let mut flattened =
                Tensor::f_empty([rows, cols], (Kind::Float, device))?.f_normal_(0.0, 1.0)?;
            let flattened = if rows < cols { flattened.f_t_()? } else { flattened };

            let (mut q, r) = Tensor::f_linalg_qr(&flattened, "reduced")?;
            let d = r.f_diag(0)?;
            let ph = d.f_sign()?;
            q *= ph;

            let mut q = if rows < cols { q.f_t_()? } else { q };
            crate::no_grad(|| q *= gain);

            q.f_contiguous()
        }
    }
}

/// Creates a new float tensor with the specified shape, device, and initialization.
pub fn init(i: Init, dims: &[i64], device: Device) -> Tensor {
    f_init(i, dims, device).unwrap()
}

impl Init {
    /// Re-initializes an existing tensor with the specified initialization
    pub fn set(self, tensor: &mut Tensor) {
        match self {
            Init::Const(cst) => {
                let _ = tensor.fill_(cst);
            }
            Init::Uniform { lo, up } => {
                let _ = tensor.uniform_(lo, up);
            }
            Init::Kaiming { dist, fan, non_linearity } => {
                let fan = fan.for_weight_dims(&tensor.size());
                let gain = non_linearity.gain();
                let std = gain / (fan as f64).sqrt();
                match dist {
                    NormalOrUniform::Uniform => {
                        let bound = 3f64.sqrt() * std;
                        let _ = tensor.uniform_(-bound, bound);
                    }
                    NormalOrUniform::Normal => {
                        tensor.copy_(&(tensor.randn_like() * std));
                    }
                }
            }
            Init::Randn { mean, stdev } => {
                tensor.copy_(&(tensor.randn_like() * stdev + mean));
            }
            Init::Orthogonal { gain } => {
                let q = f_init(Init::Orthogonal { gain }, &tensor.size(), tensor.device()).unwrap();
                crate::no_grad(|| tensor.view_as(&q).copy_(&q));
            }
        }
    }
}

impl Tensor {
    /// Re-initializes the tensor using the specified initialization.
    pub fn init(&mut self, i: Init) {
        i.set(self)
    }
}