1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
//! # nom, eating data byte by byte
//!
//! nom is a parser combinator library with a focus on safe parsing,
//! streaming patterns, and as much as possible zero copy.
//!
//! ## Example
//!
//! ```rust
//! use nom::{
//! IResult,
//! bytes::complete::{tag, take_while_m_n},
//! combinator::map_res,
//! sequence::tuple};
//!
//! #[derive(Debug,PartialEq)]
//! pub struct Color {
//! pub red: u8,
//! pub green: u8,
//! pub blue: u8,
//! }
//!
//! fn from_hex(input: &str) -> Result<u8, std::num::ParseIntError> {
//! u8::from_str_radix(input, 16)
//! }
//!
//! fn is_hex_digit(c: char) -> bool {
//! c.is_digit(16)
//! }
//!
//! fn hex_primary(input: &str) -> IResult<&str, u8> {
//! map_res(
//! take_while_m_n(2, 2, is_hex_digit),
//! from_hex
//! )(input)
//! }
//!
//! fn hex_color(input: &str) -> IResult<&str, Color> {
//! let (input, _) = tag("#")(input)?;
//! let (input, (red, green, blue)) = tuple((hex_primary, hex_primary, hex_primary))(input)?;
//!
//! Ok((input, Color { red, green, blue }))
//! }
//!
//! fn main() {
//! assert_eq!(hex_color("#2F14DF"), Ok(("", Color {
//! red: 47,
//! green: 20,
//! blue: 223,
//! })));
//! }
//! ```
//!
//! The code is available on [Github](https://github.com/Geal/nom)
//!
//! There are a few [guides](https://github.com/Geal/nom/tree/main/doc) with more details
//! about [how to write parsers](https://github.com/Geal/nom/blob/main/doc/making_a_new_parser_from_scratch.md),
//! or the [error management system](https://github.com/Geal/nom/blob/main/doc/error_management.md).
//! You can also check out the [recipes] module that contains examples of common patterns.
//!
//! **Looking for a specific combinator? Read the
//! ["choose a combinator" guide](https://github.com/Geal/nom/blob/main/doc/choosing_a_combinator.md)**
//!
//! If you are upgrading to nom 5.0, please read the
//! [migration document](https://github.com/Geal/nom/blob/main/doc/upgrading_to_nom_5.md).
//!
//! ## Parser combinators
//!
//! Parser combinators are an approach to parsers that is very different from
//! software like [lex](https://en.wikipedia.org/wiki/Lex_(software)) and
//! [yacc](https://en.wikipedia.org/wiki/Yacc). Instead of writing the grammar
//! in a separate syntax and generating the corresponding code, you use very small
//! functions with very specific purposes, like "take 5 bytes", or "recognize the
//! word 'HTTP'", and assemble them in meaningful patterns like "recognize
//! 'HTTP', then a space, then a version".
//! The resulting code is small, and looks like the grammar you would have
//! written with other parser approaches.
//!
//! This gives us a few advantages:
//!
//! - The parsers are small and easy to write
//! - The parsers components are easy to reuse (if they're general enough, please add them to nom!)
//! - The parsers components are easy to test separately (unit tests and property-based tests)
//! - The parser combination code looks close to the grammar you would have written
//! - You can build partial parsers, specific to the data you need at the moment, and ignore the rest
//!
//! Here is an example of one such parser, to recognize text between parentheses:
//!
//! ```rust
//! use nom::{
//! IResult,
//! sequence::delimited,
//! // see the "streaming/complete" paragraph lower for an explanation of these submodules
//! character::complete::char,
//! bytes::complete::is_not
//! };
//!
//! fn parens(input: &str) -> IResult<&str, &str> {
//! delimited(char('('), is_not(")"), char(')'))(input)
//! }
//! ```
//!
//! It defines a function named `parens` which will recognize a sequence of the
//! character `(`, the longest byte array not containing `)`, then the character
//! `)`, and will return the byte array in the middle.
//!
//! Here is another parser, written without using nom's combinators this time:
//!
//! ```rust
//! use nom::{IResult, Err, Needed};
//!
//! # fn main() {
//! fn take4(i: &[u8]) -> IResult<&[u8], &[u8]>{
//! if i.len() < 4 {
//! Err(Err::Incomplete(Needed::new(4)))
//! } else {
//! Ok((&i[4..], &i[0..4]))
//! }
//! }
//! # }
//! ```
//!
//! This function takes a byte array as input, and tries to consume 4 bytes.
//! Writing all the parsers manually, like this, is dangerous, despite Rust's
//! safety features. There are still a lot of mistakes one can make. That's why
//! nom provides a list of functions to help in developing parsers.
//!
//! With functions, you would write it like this:
//!
//! ```rust
//! use nom::{IResult, bytes::streaming::take};
//! fn take4(input: &str) -> IResult<&str, &str> {
//! take(4u8)(input)
//! }
//! ```
//!
//! A parser in nom is a function which, for an input type `I`, an output type `O`
//! and an optional error type `E`, will have the following signature:
//!
//! ```rust,compile_fail
//! fn parser(input: I) -> IResult<I, O, E>;
//! ```
//!
//! Or like this, if you don't want to specify a custom error type (it will be `(I, ErrorKind)` by default):
//!
//! ```rust,compile_fail
//! fn parser(input: I) -> IResult<I, O>;
//! ```
//!
//! `IResult` is an alias for the `Result` type:
//!
//! ```rust
//! use nom::{Needed, error::Error};
//!
//! type IResult<I, O, E = Error<I>> = Result<(I, O), Err<E>>;
//!
//! enum Err<E> {
//! Incomplete(Needed),
//! Error(E),
//! Failure(E),
//! }
//! ```
//!
//! It can have the following values:
//!
//! - A correct result `Ok((I,O))` with the first element being the remaining of the input (not parsed yet), and the second the output value;
//! - An error `Err(Err::Error(c))` with `c` an error that can be built from the input position and a parser specific error
//! - An error `Err(Err::Incomplete(Needed))` indicating that more input is necessary. `Needed` can indicate how much data is needed
//! - An error `Err(Err::Failure(c))`. It works like the `Error` case, except it indicates an unrecoverable error: We cannot backtrack and test another parser
//!
//! Please refer to the ["choose a combinator" guide](https://github.com/Geal/nom/blob/main/doc/choosing_a_combinator.md) for an exhaustive list of parsers.
//! See also the rest of the documentation [here](https://github.com/Geal/nom/blob/main/doc).
//!
//! ## Making new parsers with function combinators
//!
//! nom is based on functions that generate parsers, with a signature like
//! this: `(arguments) -> impl Fn(Input) -> IResult<Input, Output, Error>`.
//! The arguments of a combinator can be direct values (like `take` which uses
//! a number of bytes or character as argument) or even other parsers (like
//! `delimited` which takes as argument 3 parsers, and returns the result of
//! the second one if all are successful).
//!
//! Here are some examples:
//!
//! ```rust
//! use nom::IResult;
//! use nom::bytes::complete::{tag, take};
//! fn abcd_parser(i: &str) -> IResult<&str, &str> {
//! tag("abcd")(i) // will consume bytes if the input begins with "abcd"
//! }
//!
//! fn take_10(i: &[u8]) -> IResult<&[u8], &[u8]> {
//! take(10u8)(i) // will consume and return 10 bytes of input
//! }
//! ```
//!
//! ## Combining parsers
//!
//! There are higher level patterns, like the **`alt`** combinator, which
//! provides a choice between multiple parsers. If one branch fails, it tries
//! the next, and returns the result of the first parser that succeeds:
//!
//! ```rust
//! use nom::IResult;
//! use nom::branch::alt;
//! use nom::bytes::complete::tag;
//!
//! let mut alt_tags = alt((tag("abcd"), tag("efgh")));
//!
//! assert_eq!(alt_tags(&b"abcdxxx"[..]), Ok((&b"xxx"[..], &b"abcd"[..])));
//! assert_eq!(alt_tags(&b"efghxxx"[..]), Ok((&b"xxx"[..], &b"efgh"[..])));
//! assert_eq!(alt_tags(&b"ijklxxx"[..]), Err(nom::Err::Error((&b"ijklxxx"[..], nom::error::ErrorKind::Tag))));
//! ```
//!
//! The **`opt`** combinator makes a parser optional. If the child parser returns
//! an error, **`opt`** will still succeed and return None:
//!
//! ```rust
//! use nom::{IResult, combinator::opt, bytes::complete::tag};
//! fn abcd_opt(i: &[u8]) -> IResult<&[u8], Option<&[u8]>> {
//! opt(tag("abcd"))(i)
//! }
//!
//! assert_eq!(abcd_opt(&b"abcdxxx"[..]), Ok((&b"xxx"[..], Some(&b"abcd"[..]))));
//! assert_eq!(abcd_opt(&b"efghxxx"[..]), Ok((&b"efghxxx"[..], None)));
//! ```
//!
//! **`many0`** applies a parser 0 or more times, and returns a vector of the aggregated results:
//!
//! ```rust
//! # #[cfg(feature = "alloc")]
//! # fn main() {
//! use nom::{IResult, multi::many0, bytes::complete::tag};
//! use std::str;
//!
//! fn multi(i: &str) -> IResult<&str, Vec<&str>> {
//! many0(tag("abcd"))(i)
//! }
//!
//! let a = "abcdef";
//! let b = "abcdabcdef";
//! let c = "azerty";
//! assert_eq!(multi(a), Ok(("ef", vec!["abcd"])));
//! assert_eq!(multi(b), Ok(("ef", vec!["abcd", "abcd"])));
//! assert_eq!(multi(c), Ok(("azerty", Vec::new())));
//! # }
//! # #[cfg(not(feature = "alloc"))]
//! # fn main() {}
//! ```
//!
//! Here are some basic combinators available:
//!
//! - **`opt`**: Will make the parser optional (if it returns the `O` type, the new parser returns `Option<O>`)
//! - **`many0`**: Will apply the parser 0 or more times (if it returns the `O` type, the new parser returns `Vec<O>`)
//! - **`many1`**: Will apply the parser 1 or more times
//!
//! There are more complex (and more useful) parsers like `tuple`, which is
//! used to apply a series of parsers then assemble their results.
//!
//! Example with `tuple`:
//!
//! ```rust
//! # fn main() {
//! use nom::{error::ErrorKind, Needed,
//! number::streaming::be_u16,
//! bytes::streaming::{tag, take},
//! sequence::tuple};
//!
//! let mut tpl = tuple((be_u16, take(3u8), tag("fg")));
//!
//! assert_eq!(
//! tpl(&b"abcdefgh"[..]),
//! Ok((
//! &b"h"[..],
//! (0x6162u16, &b"cde"[..], &b"fg"[..])
//! ))
//! );
//! assert_eq!(tpl(&b"abcde"[..]), Err(nom::Err::Incomplete(Needed::new(2))));
//! let input = &b"abcdejk"[..];
//! assert_eq!(tpl(input), Err(nom::Err::Error((&input[5..], ErrorKind::Tag))));
//! # }
//! ```
//!
//! But you can also use a sequence of combinators written in imperative style,
//! thanks to the `?` operator:
//!
//! ```rust
//! # fn main() {
//! use nom::{IResult, bytes::complete::tag};
//!
//! #[derive(Debug, PartialEq)]
//! struct A {
//! a: u8,
//! b: u8
//! }
//!
//! fn ret_int1(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,1)) }
//! fn ret_int2(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,2)) }
//!
//! fn f(i: &[u8]) -> IResult<&[u8], A> {
//! // if successful, the parser returns `Ok((remaining_input, output_value))` that we can destructure
//! let (i, _) = tag("abcd")(i)?;
//! let (i, a) = ret_int1(i)?;
//! let (i, _) = tag("efgh")(i)?;
//! let (i, b) = ret_int2(i)?;
//!
//! Ok((i, A { a, b }))
//! }
//!
//! let r = f(b"abcdefghX");
//! assert_eq!(r, Ok((&b"X"[..], A{a: 1, b: 2})));
//! # }
//! ```
//!
//! ## Streaming / Complete
//!
//! Some of nom's modules have `streaming` or `complete` submodules. They hold
//! different variants of the same combinators.
//!
//! A streaming parser assumes that we might not have all of the input data.
//! This can happen with some network protocol or large file parsers, where the
//! input buffer can be full and need to be resized or refilled.
//!
//! A complete parser assumes that we already have all of the input data.
//! This will be the common case with small files that can be read entirely to
//! memory.
//!
//! Here is how it works in practice:
//!
//! ```rust
//! use nom::{IResult, Err, Needed, error::{Error, ErrorKind}, bytes, character};
//!
//! fn take_streaming(i: &[u8]) -> IResult<&[u8], &[u8]> {
//! bytes::streaming::take(4u8)(i)
//! }
//!
//! fn take_complete(i: &[u8]) -> IResult<&[u8], &[u8]> {
//! bytes::complete::take(4u8)(i)
//! }
//!
//! // both parsers will take 4 bytes as expected
//! assert_eq!(take_streaming(&b"abcde"[..]), Ok((&b"e"[..], &b"abcd"[..])));
//! assert_eq!(take_complete(&b"abcde"[..]), Ok((&b"e"[..], &b"abcd"[..])));
//!
//! // if the input is smaller than 4 bytes, the streaming parser
//! // will return `Incomplete` to indicate that we need more data
//! assert_eq!(take_streaming(&b"abc"[..]), Err(Err::Incomplete(Needed::new(1))));
//!
//! // but the complete parser will return an error
//! assert_eq!(take_complete(&b"abc"[..]), Err(Err::Error(Error::new(&b"abc"[..], ErrorKind::Eof))));
//!
//! // the alpha0 function recognizes 0 or more alphabetic characters
//! fn alpha0_streaming(i: &str) -> IResult<&str, &str> {
//! character::streaming::alpha0(i)
//! }
//!
//! fn alpha0_complete(i: &str) -> IResult<&str, &str> {
//! character::complete::alpha0(i)
//! }
//!
//! // if there's a clear limit to the recognized characters, both parsers work the same way
//! assert_eq!(alpha0_streaming("abcd;"), Ok((";", "abcd")));
//! assert_eq!(alpha0_complete("abcd;"), Ok((";", "abcd")));
//!
//! // but when there's no limit, the streaming version returns `Incomplete`, because it cannot
//! // know if more input data should be recognized. The whole input could be "abcd;", or
//! // "abcde;"
//! assert_eq!(alpha0_streaming("abcd"), Err(Err::Incomplete(Needed::new(1))));
//!
//! // while the complete version knows that all of the data is there
//! assert_eq!(alpha0_complete("abcd"), Ok(("", "abcd")));
//! ```
//! **Going further:** Read the [guides](https://github.com/Geal/nom/tree/main/doc),
//! check out the [recipes]!
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "cargo-clippy", allow(clippy::doc_markdown))]
#![cfg_attr(feature = "docsrs", feature(doc_cfg))]
#![cfg_attr(feature = "docsrs", feature(extended_key_value_attributes))]
#![deny(missing_docs)]
#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))]
#[cfg(feature = "alloc")]
#[macro_use]
extern crate alloc;
#[cfg(doctest)]
extern crate doc_comment;
#[cfg(doctest)]
doc_comment::doctest!("../README.md");
/// Lib module to re-export everything needed from `std` or `core`/`alloc`. This is how `serde` does
/// it, albeit there it is not public.
#[cfg_attr(nightly, allow(rustdoc::missing_doc_code_examples))]
pub mod lib {
/// `std` facade allowing `std`/`core` to be interchangeable. Reexports `alloc` crate optionally,
/// as well as `core` or `std`
#[cfg(not(feature = "std"))]
#[cfg_attr(nightly, allow(rustdoc::missing_doc_code_examples))]
/// internal std exports for no_std compatibility
pub mod std {
#[doc(hidden)]
#[cfg(not(feature = "alloc"))]
pub use core::borrow;
#[cfg(feature = "alloc")]
#[doc(hidden)]
pub use alloc::{borrow, boxed, string, vec};
#[doc(hidden)]
pub use core::{cmp, convert, fmt, iter, mem, ops, option, result, slice, str};
/// internal reproduction of std prelude
#[doc(hidden)]
pub mod prelude {
pub use core::prelude as v1;
}
}
#[cfg(feature = "std")]
#[cfg_attr(nightly, allow(rustdoc::missing_doc_code_examples))]
/// internal std exports for no_std compatibility
pub mod std {
#[doc(hidden)]
pub use std::{
alloc, borrow, boxed, cmp, collections, convert, fmt, hash, iter, mem, ops, option, result,
slice, str, string, vec,
};
/// internal reproduction of std prelude
#[doc(hidden)]
pub mod prelude {
pub use std::prelude as v1;
}
}
}
pub use self::bits::*;
pub use self::internal::*;
pub use self::traits::*;
pub use self::str::*;
#[macro_use]
mod macros;
#[macro_use]
pub mod error;
pub mod branch;
pub mod combinator;
mod internal;
pub mod multi;
pub mod sequence;
mod traits;
pub mod bits;
pub mod bytes;
pub mod character;
mod str;
pub mod number;
#[cfg(feature = "docsrs")]
#[cfg_attr(feature = "docsrs", cfg_attr(feature = "docsrs", doc = include_str!("../doc/nom_recipes.md")))]
pub mod recipes {}